inorganic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

New oxyfluorotellurates(IV): $MTeO_3F$ ($M = Fe^{III}$, Ga^{III} and Cr^{III})

Jean Paul Laval,* Nefla Jennene Boukharrata and Philippe Thomas

Science des Procédés Céramiques et de Traitements de Surface, UMR-CNRS, 6638, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France

Correspondence e-mail: jean-paul.laval@unilim.fr

Received 13 November 2007 Accepted 23 November 2007 Online 12 January 2008

The crystal structures of the new isomorphous compounds iron(III) oxyfluorotellurate(IV), FeTeO₃F, gallium(III) oxyfluorotellurate(IV), GaTeO₃F, and chromium(III) oxyfluorotellurate(IV), CrTeO₃F, consist of zigzag chains of MO_4F_2 distorted octahedra alternately sharing O–O and F–F edges and connected *via* TeO₃ trigonal pyramids. A full O/F anionic ordering is observed and the electronic lone pair of the Te^{IV} cation is stereochemically active.

Comment

In recent years, a systematic investigation of tellurium(IV) fluorides and oxyfluorides has been performed in our laboratory in order to develop our knowledge in four directions: (i) synthesis of new phases of potential interest for their nonlinear optical properties; (ii) characterization of new structure types in order to determine the influence of the electronic lone pair of Te^{IV} atoms (*E*) on their structural framework, especially in fluorides and oxyfluorides, compounds very sensitive to the stereochemical activity of this electronic lone pair; (iii) determination of the main rules governing the O/F anionic long-range or short-range ordering in oxyfluorides; and (iv) crystal growth in hydrofluoric acid medium of tellurates and oxyfluorotellurates(IV), which could be promising for nonlinear optics.

Following on from the structural characterization of the TeOF₂ (Guillet *et al.*, 1999), Te₂O₃F₂ (Ider *et al.*, 1996) and KTe₃O₆F (Laval *et al.*, 2002) phases, this paper deals with the syntheses and crystal structure determination of a new isomorphous series of oxyfluorides, MTeO₃F, with $M = Fe^{III}$, Ga^{III} and Cr^{III}.

The Te atom is bonded to three O atoms at distances of ca 1.9 Å (Tables 1 and 2). It occupies the center of a trigonal pyramid with the stereochemically active electronic lone pair E pointing in the direction of the fourth corner (Fig. 1). If three weak extra bonds with lengths of ca 2.7 Å are considered, the anionic polyhedron can be described as a distorted

octahedron. The lone pair *E* occupies the volume formed between the Te atom and the weakly bonded anions. The *M* atom is sixfold coordinated, slightly shifted from the center of a distorted MO_4F_2 octahedron (Fig. 2, and Tables 1 and 2). Bond-valence calculations (Brown, 1981) are consistent with the description $M^{III}Te^{IV}(O^{2-})_3F^-$ showing a full O/F ordering (Tables 3 and 4).

FeTeO₃F, GaTeO₃F and CrTeO₃F [with lattice parameters refined on the basis of powder X-ray diffraction data of a =5.028 (1) Å, b = 5.073 (1) Å, c = 12.307 (2) Å and $\beta =$ 97.40 (4)°, using the refinement program CHEKCELL (Laugier & Bochu, 2000)] are isomorphous, with 'zigzag' chains of MO_4F_2 ($M = Fe^{III}$, Ga^{III} and Cr^{III}) distorted octahedra sharing alternately O-O and F-F edges and interconnected via TeO₃ trigonal pyramids (Fig. 3a). A projection on to (010) shows large tunnels parallel to [010], towards which point the lone pairs E (Fig. 3b). The description considering the Te anionic environment as a distorted octahedron (Fig. 1) allows an interesting comparison with the α -PbO₂ (Fig. 4) structure (Hyde & Andersson, 1989). Indeed, the structure of $M \text{TeO}_3 \text{F} (M = \text{Fe}^{\text{III}}, \text{Ga}^{\text{III}} \text{ and } \text{Cr}^{\text{III}}; \text{Fig. } 3a)$ is thus based on parallel zigzag chains of corner-sharing octahedra, two adjacent chains being shifted by a/2 along the [001] direction. The idealized $MTeO_3F$ structure appears as a superstructure of α -PbO₂ with doubling of the *c* axis (Table 5). However, the hexagonal close packed (hcp) anionic array and

Figure 1

The anionic polyhedron (distorted octahedron) around the Te atom in the FeTeO₃F structure. The arrow indicates the direction towards which the lone pair *E* points. The Ga and Cr analogs are isomorphous. [Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.]

Figure 2

The coordination polyhedron of the Fe atom in FeTeO₃F. [Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2};$ (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2};$ (iii) -x + 1, -y + 2, -z + 1; -z + 1; (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}.$]

Figure 3

(a) The (100) layer of 'zigzag' $(FeO_3F)_n$ chains of FeO_4F_2 octahedra connected via TeO_3 . (b) A projection on to (010), showing the tunnels towards which the lone pairs *E* point.

Figure 4

The ideal structure of α -PbO₂ for comparison with the structure of FeTeO₃F (see Fig. 3*a*).

the positions of the cations are more distorted than in α -PbO₂ as a consequence of the cationic ordering, of the difference in size between $M^{\rm III}$ and Te^{IV} cations, and of the stereochemical activity of the lone pair *E*. A strong monoclinic distortion of the lattice also occurs in the *M*TeO₃F phases, but the analogy is worth noting.

The new $M\text{TeO}_3\text{F}$ structure type is important because it shows that oxyfluorotellurates associating the Te^{IV} cation with trivalent cations presenting octahedral coordination can adopt a structure type derived from a classical oxide such as α -PbO₂, with a distorted hcp anionic array and full cationic ordering in parallel zigzag rows. It also corresponds to an intergrowth of MOF and TeO₂ slabs with F⁻ anions only bonded to M^{III} cations. There is no strong Te-F bond, sensitive to hydrolysis, so this kind of phase is air stable and could be of interest for applications in optical devices. Moreover, the unusual environment of M^{III} cations, interconnected by alternate F-F and O-O edges, offers the potential of promising magnetic properties.

Experimental

Fe₂O₃, Cr₂O₃ and Ga₂O₃ were commercial products (Aldrich, 99.9%) and TeO₂ was prepared by decomposition of commercial H₆TeO₆ (Aldrich, 99.9%) at 823 K under flowing oxygen. FeTeO₃F and GaTeO₃F were prepared in two steps: first an intimate mixture (mol%) of $\frac{1}{2}Fe_2O_3$ -4TeO₂ (or $\frac{1}{2}Ga_2O_3$ -2TeO₂) was dissolved in hydrofluoric acid (40%) in a Teflon beaker and heated at 453 K, and then, after slow evaporation, the product was crushed and heated in a sealed platinum tube. The temperature was progressively increased to 723 K (923 K for the Ga phase) (5 K min⁻¹), kept stable for 96 h, slowly decreased to 673 K (0.05 K min⁻¹ for Fe and 0.1 K min⁻¹ for Ga) and finally stabilized for 10 h. After that, the tube was waterquenched to room temperature. Green crystals of FeTeO3F and colorless crystals of GaTeO₃F, air stable and suitable for X-ray diffraction study, were obtained. The chromium phase was obtained in powder form by direct heating of a Cr₂O₃-CrF₃-3TeO₂ mixture in a sealed platinum tube. The temperature was progressively increased to 973 K (5 K min⁻¹) and kept stable for 96 h. The tube was then water-quenched.

Compound (I)

Crystal data FeTeO₃F $M_r = 250.45$

Monoclinic, $P2_1/n$ a = 5.0667 (7) Å b = 5.0550 (7) Å c = 12.3975 (15) Å $\beta = 97.630$ (13)°

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Bruker 2004) $T_{\rm min} = 0.337, T_{\rm max} = 0.763$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.036$ S = 0.99903 reflections $V = 314.72 (7) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation \mu = 13.73 mm⁻¹ T = 293 (2) K 0.10 \times 0.04 \times 0.02 mm

10518 measured reflections 903 independent reflections 757 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.058$

56 parameters $\Delta \rho_{\text{max}} = 0.88 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.95 \text{ e } \text{ Å}^{-3}$

inorganic compounds

Table 1

Selected bond lengths (Å) for (I).

Te1-O3	1.870 (2)	Fe1-O1 ¹	1.923 (2)
Te1-O1	1.884 (2)	Fe1-O3	1.941 (2)
Te1-O2	1.904 (2)	Fe1-O2 ⁱⁱ	1.965 (2)
Te1-O1 ⁱ	2.695 (2)	Fe1-F1	1.974 (2)
Te1-O3 ⁱⁱ	2.746 (2)	Fe1-F1 ⁱⁱⁱ	2.040 (2)
Te1-F1 ⁱ	2.850 (3)	Fe1-O2 ^{iv}	2.054 (2)

Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 1, -y + 2, -z + 1; (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Compound (II)

Crystal data

GaTeO₃F $M_r = 264.32$ Monoclinic, P_{2_1}/n a = 5.0625 (7) Å b = 4.9873 (7) Å c = 12.1662 (15) Å $\beta = 97.952$ (13)°

Data collection

Nonius KappaCCD diffractometer		
Absorption correction: multi-scan		
(SADABS; Bruker 2004)		
$T_{\min} = 0.257, T_{\max} = 0.697$		

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.017$ 56 parameters
 to prep

 $wR(F^2) = 0.042$ $\Delta \rho_{max} = 1.25$ e Å⁻³
 to prep

 S = 1.21 $\Delta \rho_{min} = -1.71$ e Å⁻³
 4

 867 reflections
 $\Delta \rho_{min} = -1.71$ e Å⁻³
 $\Delta \rho_{min} = -1.71$ e Å⁻³

 $R_{\rm int} = 0.036$

V = 304.22 (7) Å³

Mo Kα radiation

 $0.10 \times 0.04 \times 0.02 \text{ mm}$

8547 measured reflections

867 independent reflections

831 reflections with $I > 2\sigma(I)$

 $\mu = 18.29 \text{ mm}^-$

T = 293 (2) K

Z = 4

Table 2

Selected bond lengths (Å) for (II).

Te1-O3	1.865 (2)	Ga1-O1 ⁱ	1.918 (2)
Te1-O1	1.884 (2)	Ga1-O3	1.911 (2)
Te1-O2	1.918 (2)	Ga1-O2 ⁱⁱ	1.923 (2)
Te1-O1 ⁱ	2.632 (2)	Ga1-F1	1.929 (2)
Te1-O3 ⁱⁱ	2.731 (2)	Ga1-F1 ⁱⁱⁱ	2.009 (2)
Te1-F1 ⁱ	2.830 (2)	Ga1-O2 ^{iv}	1.987 (2)

Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 1, -y + 2, -z + 1; (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Table 3

Bond valences for (I).

	Fe1	Te1	V_{ij}
O1	0.600	1.286/0.144	2.03
O2	0.536/0.421	1.218	2.18
O3	0.576	1.335/0.125	2.04
F1	0.417/0.349	0.071	0.84
V_{ij}	2.90	4.18	-

Table 4

Bond valences for (II).

	Ga1	Te1	V_{ij}
01	0.602	1.286/0.17	2.06
O2	0.594/0.499	1.173	2.27
O3	0.613	1.354/0.13	2.10
F1	0.480/0.386	0.096	0.96
V_{ij}	3.17	4.21	-

Table 5

Comparison of lattice parameters (Å) of FeTeO₃F and α -PbO₂.

FeTeO ₃ F	α-PbO ₂	
a = 5.067	a = 4.989	
$b = 5.055; \beta = 97.63$	c = 5.466	
$c = 12.398 = 2 \times 6.199$	b = 5.947	
Monoclinic, $P2_1/n$	Orthorhombic, <i>Pbcn</i>	

For both compounds, data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *DIRAX/LSQ* (Duisenberg *et al.*, 2000); data reduction: *EVALCCD* (Duisenberg *et al.*, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *SHELXL97*.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3115). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Brown, I. D. (1981). In Structure and Bonding in Crystals, edited by M. O'Keeffe & A. Navrotsky. New York: Academic Press.

Bruker (2004). SADABS. Version 2.11. Bruker AXS Inc., Madison, Wisconsin, USA.

Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.

Guillet, L., Ider, A., Laval, J. P. & Frit, B. (1999). J. Fluorine Chem. 93, 33–38. Hyde, B. G. & Andersson, S. (1989). In Inorganic Crystal Structures. New York: Wiley.

Ider, A., Laval, J. P., Frit, B., Carre, J. & Bastide, J. P. (1996). J. Solid State Chem. 123, 68–72.

Laugier, J. & Bochu, B. (2000). CHEKCELL. INP Grenoble, France.

Laval, J. P., Guillet, L. & Frit, B. (2002). Solid State Sci. 4, 549-556.

Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.